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Abstract

Motivated by the scarcity of high-quality labeled biomedical text, as well as
the success of data programming [12], where domain expert authored labeling
functions provide weak labels for large datasets, we introduce KRISS-Search. We
envision KRISS-Search increasing the efficiency of programmatic data labeling
and providing broader utility as a general purpose interactive biomedical search
engine. We first introduce unsupervised KRISS-Search and show that our method
outperforms existing methods in recommending semantically similar spans (>50%
AUPRC improvement relative to PubMedBERT [4]). We then introduce supervised
KRISS-Search and, with simulated human interaction, demonstrate that we achieve
high levels of performance on a task to classify spans as semantically similar or
different, outperforming PubMedBERT by 2 F1 points. Finally, we demonstrate
that our method performs competitively in low-resource biomedical NER.

1 Introduction

A critical challenge faced by practitioners of biomedical natural language processing is a paucity of
high-quality labeled data. Manual annotation of biomedical text is a bottleneck for developers, since it
requires far greater expertise than other domains. Techniques such as weak supervision [16, 2, 15, 9, 5]
and active learning [8, 13] are promising methods to overcome this challenge. Programmatic data
labeling [12, 11, 10], a source of weak supervision where domain experts develop heuristics (labeling
functions) to provide noisy labels on large datasets, makes good use of domain expertise. However,
developing such labeling functions that provide wide coverage often requires a comprehensive set
of seed terms that serve as building blocks for these labeling functions. Augmenting the set of seed
terms to increase the efficacy of the expert defined labeling functions can be time consuming and
laborious.

Motivated by this challenge, we introduce unsupervised KRISS-Search. Reusing the KRISSBERT [17]
embedding space, which is designed for biomedical entity-linking, unsupervised KRISS-Search
addresses the following task - given a user-selected query span from a biomedical corpus, we return
semantically similar spans to the user, where a span is a unique document identifier, start index,
and end index positional 3-tuple. Next, we adapt unsupervised KRISS-Search to supervised KRISS-
Search which leverages user feedback through active learning to refine the concept of similarity
used for unsupervised KRISS-Search. In the context of programmatic data labeling, we envision
unsupervised KRISS-Search recommending terms for users to incorporate into labeling functions
and supervised KRISS-Search directly generating noisy labels, providing more flexible replacements
for expert-developed labeling functions.

Our main contributions can be summarized as follows:
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Figure 1: KRISS-Search method. (a): First, we embed the corpus. The KRISSBERT embedding
space places mentions of the same concept (i.e. "HTN", "Hypertension") close and different concepts
further apart. (b): The user selects spans to seed supervised and unsupervised KRISS-Search. For
unsupervised KRISS-Search, the user selects a single positive query span. For supervised KRISS-
Search, the user selects any number of positive and negative spans. (c) and (d) show how we use
computations in the embedding space to return new spans. (c): In unsupervised KRISS-Search, we
return nearest neighbors to the query span. (d): In supervised KRISS-Search, we use active learning
to train a light-weight classifier to refine recommendations. This schematic shows examples closest to
the decision boundary being returned for subsequent active learning. (e): A human provides feedback
on the returned spans. We can then retrain the light-weight classifier and return to (d).

1. We demonstrate that unsupervised KRISS-Search outperforms PubMedBERT [4] by 51%
area under the precision-recall curve (AUPRC) in returning spans with exact concept unique
identifier (CUI) matches to the CUI associated with the query span and by 54% in returning
spans with similar associated CUIs (Table 2).

2. By extending unsupervised KRISS-Search to supervised KRISS-Search through user-
feedback and active learning, we surface spans associated with specific concepts with
F1 > 0.76, outperforming PubMedBERT by 2 points and BERT [3] by 13 points.

3. Despite our method not being specifically designed for named entity recognition (NER),
we demonstrate that supervised KRISS-Search performs comparably to PubMedBERT on
average in the low-resource biomedical NER setting.

2 Methods

In this paper, we focus our comparison of methods on training strategy and keep the BERT-base [3]
architecture consistent across approaches. The methods reported in this paper can be summarized
with the descriptors "contextual", "in-domain", "contrastive", and "interactive". Contextual: uses
context to surface recommendations. In-domain: trained on in-domain data, in our case biomedical
text. Contrastive: enforces similarity between semantically similar spans and dissimilarity between
semantically different spans during training. Interactive: human interaction guides the generated
recommendations. Each method - BERT, PubMedBERT, unsupervised KRISS-Search, supervised
KRISS-Search - implements an additional descriptor in the order they were listed, with supervised
KRISS-Seach implementing all four.

2.1 Unsupervised KRISS-Search

The unsupervised KRISS-Search task is as follows - given a user selected span from a biomedical
corpus, which we refer to as the query span, we return related spans from the rest of the corpus. We
modify KRISSBERT [17] to make generating spans for the full corpus computationally tractable as
described in the Appendix A.1. Given a query span, we return a ranked list of related spans, ordered
by the L2 distance of their embedding to the query span embedding. We reuse the KRISSBERT
embedding space for our task as we hypothesize that the contrastive loss, as well as the domain
specific pretraining, make the KRISSBERT embedding space particularly well suited for our task.

2.1.1 Evaluation

For evaluation of unsupervised KRISS-Search, we use the n2c2 dataset (2019 n2c2/UMass Lowell
shared task 3) [7]. This dataset contains 100 discharge summaries labeled with CUI annotations.
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We choose this dataset as it represents a domain shift from the PubMed abstracts that were used to
train KRISSBERT. Additionally, n2c2 is annotated with diverse entities, including medical problems,
treatments, and tests from established ontologies [6, 14].

To evaluate the quality of the retrieved spans, we assess the model’s ability to retrieve (1) spans with
associated CUIs that match the CUI associated with the query span (same in Tables 1 and 2) and (2)
spans with associated CUIs that are closely related to the CUI associated with the query span (related
in Table 1 and 2). Related CUIs are generated by sampling a parent CUI of the query-associated CUI
and returning its children using the UMLS hierarchy [1]. The same experiments indicate how well
each approach is at returning specific concepts of interest, while the related experiments measure
how well each approach is at returning broader concepts.

We adopt a relaxed evaluation measure where spans that overlap with a concept mention are associated
with the concept. We apply relaxed evaluation as we hypothesize that for our task, generating precise
span boundaries is less important than providing the user with a greater number of recommendations.
We represent spans with the mean of the span token embeddings. We choose the test query spans,
used in Tables 1 and 2, as follows. For 255 CUIs with more than 25 mentions in the corpus and
corresponding span embeddings, we randomly sample one span. We select CUIs that appear more
than 25 times hypothesizing the difficulty of comparing approaches using low-prevalence CUIs. To
evaluate the model performance, we compute average area under the precision-recall curve (AUPRC)
values across the 255 test query spans for both the same and related experiments (AUPRC in Table
1). The denominator of precision corresponds to the number of nearest neighbors retrieved, while
the denominator of recall corresponds to the total number of mentions in the corpus for each CUI.
We also compute average per-query percent AUPRC improvement of KRISS-Search compared to
PubMedBERT (%∆ in Table 2), the frequency with which unsupervised KRISS-Search outperforms
PubMedBERT with respect to AUPRC ("Wine Rate" in Table 2), and p-values testing the null
hypothesis that the means of the AUPRCs from unsupervised KRISS-Search and PubMedBERT are
the same using a two-sample t-test ("P-Value" in 2).

2.2 Supervised KRISS-Search

To incorporate user feedback, we train a light-weight classifier with KRISSBERT embeddings as
input. We cache the KRISSBERT embeddings to reduce the latency that would results from fine-
tuning KRISSBERT and embedding the corpus at each active learning iteration. Our pool-based
active learning strategy is as follows. First, the user selects a small number of seed positive and
negative examples. We then train the light-weight classifier on these seed examples. Leveraging this
trained model, we generate a small number of additional examples to be labeled and added to the
training dataset. We then retrain the classifier from scratch, repeating this procedure until the label
quality appears satisfactory.

2.2.1 Concept Retrieval

To measure the performance of supervised KRISS-Search in retrieving specific concept mentions, we
use same 2019 n2c2 entity-linking dataset that was used to evaluate unsupervised KRISS-Search,
simulating user feedback with the gold labels. We adopt a least confidence active learning strategy
where we return examples closest to the decision boundary for labeling. Furthermore, we use a
logistic regression linear probe as the classifier, 5 active learning iterations, 15 seed examples, and
15 labeled examples per active learning iteration. Furthermore, we append the L2 distance from the
mean of the positively labeled embeddings to the KRISSBERT embeddings as an additional input
feature. For these experiments, we use 28 concepts with greater than 100 mentions and corresponding
embeddings. For evaluation, we compute performance using mentions that were not labeled during
training.

2.2.2 Low-Resource Biomedical Named Entity Recognition

Although KRISS-Search is not designed for NER, we evaluate our method on the BLURB [4] NER
datasets to ground our method in a well-understood task. Here, we adopt strict evaluation as is
conventional in NER. We hypothesized that mean pooling aggregation does not sufficiently represent
span boundaries and thus concatenate the first token embedding with the last token embedding and
append the length of the span. To provide a fair comparison between the traditional NER approaches
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Table 1: Average AUPRC scores from unsupervised KRISS-Search, PubMedBERT, and BERT across
255 test query spans.

Evaluation Type Model AUPRC
Same BERT 0.14 ± 0.129

PubMedBERT 0.37 ± 0.233
unsupervised KRISS-Search 0.43 ± 0.253

Related BERT 0.10 ± 0.092
PubMedBERT 0.26 ± 0.192
unsupervised KRISS-Search 0.33 ± 0.233

Table 2: AUPRC comparison of unsupervised KRISS-Search and PubMedBERT.
Evaluation Type %∆ Win Rate P-Value
Same + 51% 0.71 4.5E-03
Related + 54% 0.76 1.6E-04

and KRISS-Search, we equalize the number of labeled words used for training. We arbitrarily choose
the total number of labeled words to be equal to the number of words in 75 randomly sampled
sentences that are used for BERT and PubMedBERT training. For all methods, we use the same
single layer perceptron as the light-weight classifier. During BERT and PubMedBERT training, we
save training checkpoints, and for testing, we choose the checkpoint with the best performance on the
full validation sets. We forgo this approach with KRISS-Search, as we assume that the user has not
labeled validation sets. We report results using the random sampling baseline (RSB in Table 3), as
well as least confidence active learning (LC in Table 3).

3 Results

3.1 Unsupervised KRISS-Search

From Table 1 we observe that unsupervised KRISS-Search significantly outperforms PubMedBERT,
and that this improvement is significant ("P-Value" in Table 2). We note that while average AUPRC
decreases from the same to related evaluation type (Table 1), %∆ increases (Table 2).

3.2 Supervised KRISS-Search

In concept retrieval on the n2c2 dataset, we achieve the following average F1 score: 0.761 ± 0.204,
which exceeds PubMedBERT by 2 points and BERT by 13 points. These results are notable as the
number of negative spans outnumber the number of positive spans by more than 200x. The random
sampling baseline and active learning without the distance feature perform worse.

Table 3 shows comparable performance of our method on average in low-resource NER. One drawback
of our method in the strict evaluation context is that given a maximum span length, we always miss
longer spans. BC2GM and JNLPBA contain lengthy spans so we do not do as well here. Nonetheless,
on the other datasets, our method performs comparably or outperforms PubMedBERT. This is
significant given that our method was not designed for NER. Our performance here indicates that
supervised KRISS-Search can generalize to coarse-grain biomedical concepts and strict evaluation.

Table 3: Low-resource biomedical NER.
Dataset BERT PubMedBERT KRISS-Search (RSB) KRISS-Search (LC)
BC5-chem 69.85 73.25 68.39 83.02
BC5-disease 49.93 60.93 49.27 71.95
NCBI-disease 55.00 63.84 40.99 64.92
BC2GM 48.45 54.62 35.63 50.17
JNLPBA 55.30 59.74 36.31 48.48
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4 Conclusion

We demonstrate that unsupervised KRISS-Search outperforms existing embedding methods for
biomedical span similarity. Supervised KRISS-Search illustrates how with human interaction we
can achieve high levels of performance on a task to retrieve similar spans and we can perform
competitively in low-resource biomedical NER. Future work will investigate whether KRISS-Search
does indeed address the initial motivation - aiding programmatic data labeling as part of an interactive
biomedical NLP system. Nonetheless, we envision KRISS-Search being broadly useful as a general
purpose interactive biomedical search engine.
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A Appendix

A.1 Efficiently Embedding the Corpus

Unsupervised KRISS-Search and supervised KRISS-Search both require embedding the entire.
However, in most cases, this is computationally intractable with KRISSBERT. KRISSBERT [17] uses
the CLS token to represent a span’s contextual embedding. To communicate the span of interest to
the model, KRISSBERT places entity tokens between the span and its context. Therefore, generating
embeddings for X spans requires X forward passes.

To overcome this limitation, we remove the entity flags from the mention representations. To produce
span embeddings, we aggregate the final layer embeddings of tokens in the span. Fig. 2a shows
how KRISSBERT uses entity tokens (corresponding embeddings shown in red) to denote the entity
and CLS embeddings to compute the contrastive loss. Fig. 2b shows how KRISS-Search removes
the entity tokens and aggregates the final layer embeddings of the entity tokens to compute the loss.
The dummy text snippets in Fig. 2 are an example of a positive pair where "patient discharge" and
"released" correspond to the same concept and are thus pushed together in the embedding space
during contrastive training. The entity encoder is left unchanged. We train the entity encoder jointly
with the mention encoder as is done in KRISSBERT as we hypothesize that the hierarchical UMLS
information embedded in the entity encoder is useful for our task.

Our modifications greatly increase computation efficiency. If we pass 512 tokens through our model
during a single forward pass, our method reduces inference time by N × 512 where N is the maximum
span length that we embed. We use the same hyperparameters to retrain KRISSBERT and observe
marginally degraded performance on validation data for the original KRISSBERT entity linking task.
We note that the selected hyperparameters optimize validation performance of the original model.
Therefore, a slight loss of performance on the validation data is expected. As the goal of this paper is
not entity linking, we leave re-selecting hyperparameters to future work.

(a) KRISSBERT mention encoder training with entity tokens. This is the
approach used in the original paper.

(b) KRISSBERT mention encoder training without entity tokens. This is the
strategy adopted for this paper.

Figure 2: A comparison of the mention encoder training with and without the entity tokens.
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